Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models.

نویسندگان

  • Cynthia X Ma
  • Shirong Cai
  • Shunqiang Li
  • Christine E Ryan
  • Zhanfang Guo
  • W Timothy Schaiff
  • Li Lin
  • Jeremy Hoog
  • Reece J Goiffon
  • Aleix Prat
  • Rebecca L Aft
  • Matthew J Ellis
  • Helen Piwnica-Worms
چکیده

Patients with triple-negative breast cancer (TNBC) - defined by lack of estrogen receptor and progesterone receptor expression as well as lack of human epidermal growth factor receptor 2 (HER2) amplification - have a poor prognosis. There is a need for targeted therapies to treat this condition. TNBCs frequently harbor mutations in TP53, resulting in loss of the G1 checkpoint and reliance on checkpoint kinase 1 (Chk1) to arrest cells in response to DNA damage. Previous studies have shown that inhibition of Chk1 in a p53-deficient background results in apoptosis [corrected] in response to DNA damage. We therefore tested whether inhibition of Chk1 could potentiate the cytotoxicity of the DNA damaging agent irinotecan in TNBC using xenotransplant tumor models. Tumor specimens from patients with TNBC were engrafted into humanized mammary fat pads of immunodeficient mice to create 3 independent human-in-mouse TNBC lines: 1 WT (WU-BC3) and 2 mutant for TP53 (WU-BC4 and WU-BC5). These lines were tested for their response to irinotecan and a Chk1 inhibitor (either UCN-01 or AZD7762), either as single agents or in combination. The combination therapy induced checkpoint bypass and apoptosis in WU-BC4 and WU-BC5, but not WU-BC3, tumors. Moreover, combination therapy inhibited tumor growth and prolonged survival of mice bearing the WU-BC4 line, but not the WU-BC3 line. In addition, knockdown of p53 sensitized WU-BC3 tumors to the combination therapy. These results demonstrate that p53 is a major determinant of how TNBCs respond to therapies that combine DNA damage with Chk1 inhibition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chk'ing p53-deficient breast cancers.

Loss or functional impairment of p53 occurs in many human cancers, and its absence is often associated with a poor response to conventional chemotherapy. Hence, much effort is currently devoted to developing novel treatments for p53-deficient malignancies. One approach is to target pathways that are selectively required for the survival of p53-deficient cancer cells, thus exploiting a synthetic...

متن کامل

Association of Tissue Selenium Level and p53 Expression in Breast Cancer

Background and Objective: Breast cancer is the most commonly diagnosed cancer in women worldwide, which alone accounts for 30% of all new cancer cases in women. The development of cancer is a multistep process.  The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of stimuli such as Oxidative stress that is known to cause DNA damag...

متن کامل

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

A Quest for Better Mouse Models of Breast and Ovarian Cancers

Inheritedmutations in the BRCA1 (breast cancer 1, early onset) gene increase the risk of female breast and ovarian cancers. About 65% and 40% of females who inherit BRCA1 mutations will develop breast and ovarian cancer, respectively (Antoniou et al., 2003). To address specific roles of BRCA1 in the normal development and cancer pathogenesis, a number of genetically modified mouse models have b...

متن کامل

CHK1 regulates NF-κB signaling upon DNA damage in p53- deficient cells and associated tumor-derived microvesicles

The recently discovered CHK1-Suppressed (CS) pathway is activated by inhibition or loss of the checkpoint kinase CHK1, promoting an apoptotic response to DNA damage mediated by caspase-2 in p53-deficient cells. Although functions of the CS-pathway have been investigated biochemically, it remains unclear whether and how CHK1 inhibition can be regulated endogenously and whether this constitutes a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 122 4  شماره 

صفحات  -

تاریخ انتشار 2012